PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

EPrints submitted by Amaury Lendasse

Click here to see user's record.

Number of EPrints submitted by this user: 78

Time series forecasting: obtaining long term trends with self-organizing maps
Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort and Michel Verleysen
Pattern Recognition Letters Volume 26, Number 12, pp. 1795-1808, 2005. ISSN 0167-8655

Fast bootstrap methodology for model selection
Amaury Lendasse, Geoffroy Simon, Vincent Wertz and Michel Verleysen
Neurocomputing Volume 64, pp. 161-181, 2005. ISSN 0925-2312

Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
Fabrice Rossi, Amaury Lendasse, Damien Francois, Vincent Wertz and Michel Verleysen
Chemometrics and Intelligent Laboratory Systems 2004. ISSN 0169-7439

Vector quantization: a weighted version for time-series forecasting
Amaury Lendasse, Damien Francois, Vincent Wertz and Michel Verleysen
Future Generation Computer Systems Volume 21, Number 7, pp. 1056-1067, 2005. ISSN 0167-739X

LS-SVM hyperparameter selection with a nonparametric noise estimator
Amaury Lendasse, Yongnan Ji, Nima Reyhani and Michel Verleysen
In: Artificial Neural Networks: Biological Inspirations – ICANN 2005, 15th International Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part II Lecture Notes in Computer Science , 3697 (XXXII). (2005) Springer-Verlag GmbH , Germany , pp. 625-630. ISBN 3-540-28755-8

Mutual information and k-nearest neighbors approximator for time series prediction
Antti Sorjamaa, Jin Hao and Amaury Lendasse
In: Artificial Neural Networks: Biological Inspirations – ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II Lecture Notes in Computer Science , 3697 (XXXII). (2005) Springer-Verlag GmbH , Germany , pp. 553-558. ISBN 3-540-28755-8

Direct and recursive prediction of time series using Mutual information selection
Yongnan Ji, Jin Hao, Nima Reyhani and Amaury Lendasse
In: Computational Intelligence and Bioinspired Systems: 8th International Workshop on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Proceedings Lecture Notes in Computer Science , 3512 (XXV). (2005) Springer-Verlag GmbH , Germany , pp. 1010-1017. ISBN 3-540-26208-3

Input selection for long-term prediction of time series
Jarkko Jarkko, Jaakko Hollmen and Amaury Lendasse
In: Computational Intelligence and Bioinspired Systems: 8th International Workshop on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Proceedings Lecture Notes in Computer Science , 3512 (XXV). (2005) Springer-Verlag GmbH , Germany , pp. 1002-1009. ISBN 3-540-26208-3

Input and structure selection for k-NN approximator
Antti Sorjamaa, Nima Reyhani and Amaury Lendasse
In: Computational Intelligence and Bioinspired Systems: 8th International Workshop on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Proceedings Lecture Notes in Computer Science , 3512 (XXV). (2005) Springer-Verlag GmbH , Germany , pp. 985-991. ISBN 3-540-26208-3

Mutual information and gamma test for input selection
Nima Reyhani, Jin Hao, Yongnan Ji and Amaury Lendasse
In: ESANN 2005, European Symposium on Artificial Neural Networks, 27-29 April 2005, Bruges, Belgium.

Pruned lazy learning models for time series prediction
Antti Sorjamaa, Amaury Lendasse and Michel Verleysen
In: ESANN 2005, European Symposium on Artificial Neural Networks, 27-29 April 2005, Bruges, Belgium.

Input selection and function approximation using the SOM: an application to spectrometric modeling
Francesco Corona and Amaury Lendasse
In: WSOM'05, 5th Workshop on Self-Organizing Maps, 5-8 September 2005, Paris 1 Panthéon-Sorbonne University, Paris, France.

Methodology for Long-term Prediction of Time Series
Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji and Amaury Lendasse
Neurocomputing 2005.

A Feature Selection Methodology for Steganalysis
Yoan Miche, Benoit Roue, Amaury Lendasse and Patrick Bas
In: Multimedia Content Representation, Classification and Security Lecture Notes in Computer Science , 4105 . (2006) Springer , Berlin / Heidelberg , pp. 49-56. ISBN 978-3-540-39392-4

Analysis of Fast Input Selection: Application in Time Series Prediction
Jarkko Tikka, Amaury Lendasse and Jaakko Hollmen
In: Artificial Neural Networks – ICANN 2006 Lecture Notes in Computer Science , 4132 . (2006) Springer Berlin / Heidelberg , Berlin / Heidelberg , pp. 161-170. ISBN 978-3-540-38871-5

Long-Term Prediction of Time Series Using State-Space Models
Elia Liitiäinen and Amaury Lendasse
In: Artificial Neural Networks – ICANN 2006 Lecture Notes in Computer Science , 4132 . (2006) Springer Berlin , Berlin / Heidelberg , pp. 181-190. ISBN 978-3-540-38871-5

Determination of the Mahalanobis matrix using nonparametric noise estimations
Amaury Lendasse, Francesco Corona, Jin Hao, Nima Reyhani and Michel Verleysen
In: ESANN 2006, European Symposium on Artificial Neural Networks, 26-28 April 2006, Bruges (Belgium),.

LS-SVM functional network for time series prediction
Tuomas Kärnä, Fabrice Rossi and Amaury Lendasse
In: ESANN 2006, European Symposium on Artificial Neural Networks, 26-28 April 2006, Bruges (Belgium).

EM-algorithm for training of state-space models with application to time series prediction
Elia Liitiäinen, Nima Reyhani and Amaury Lendasse
In: ESANN 2006, European Symposium on Artificial Neural Networks, 26-28 April 2006, Bruges (Belgium).

Time series prediction using DirRec strategy
Antti Sorjamaa and Amaury Lendasse
In: ESANN 2006, European Symposium on Artificial Neural Networks, 26-28 April 2006, Bruges (Belgium).

Methodology for Long-term Prediction of Time Series
Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji and Amaury Lendasse
Neurocomputing Volume 70, Number 16-18, pp. 2861-2869, 2007. ISSN 0925-2312

Time series prediction competition: The CATS benchmark
Amaury Lendasse, Erkki Oja, Olli Simula and Michel Verleysen
Neurocomputing Volume 70, Number 13-15, pp. 2325-2329, 2007. ISSN 0925-2312

Advantages of Using Feature Selection Techniques on Steganalysis Schemes
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula
In: 9th InternationalWork-Conference on Artificial Neural Networks LNCS , 4507/2007 . (2007) Springer-Verlag , Berlin Heidelberg , pp. 606-613. ISBN 978-3-540-73006-4

Gaussian fitting based FDA for chemometrics
Tuomas Karna and Amaury Lendasse
In: 9th InternationalWork-Conference on Artificial Neural Networks Lecture Notes in Computer Science , 4507/2007 . (2007) Springer-Verlag , Berlin Heidelberg , pp. 186-193. ISBN 978-3-540-73006-4

Non-parametric Residual Variance Estimation in Supervised Learning
Elia Liitiäinen, Amaury Lendasse and Francesco Corona
In: 9th InternationalWork-Conference on Artificial Neural Networks Lecture Notes in Computer Science , 4507/2007 . (2007) Springer-Verlag , Berlin Heidelberg , pp. 63-71. ISBN 978-3-540-73006-4

State-of-the-Art and Evolution in Public Data Sets and Competitions for System Identification, Time Series Prediction and Pattern Recognition
Joos Vandewalle, Johan Suykens, Bart De Moor and Amaury Lendasse
In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, 15-20 April 2007, Honolulu, HI.

Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks
Antti Sorjamaa and Amaury Lendasse
In: Neural Networks, 2007. IJCNN 2007. International Joint Conference on, 12-17 Aug. 2007, Orlando, FL, USA.

Variable Scaling for Time Series Prediction: Application to the ESTSP'07 and the NN3 Forecasting Competitions
Elia Liitiäinen and Amaury Lendasse
In: Neural Networks, 2007. IJCNN 2007. International Joint Conference on, 12-17 Aug. 2007, Orlando, FL, USA.

Proceedings of ESTSP 2007
Amaury Lendasse, ed. (2007) Helsinki University of Technology , Espoo, Finland . ISBN 978-951-22-8601-0

A som-based approach to estimating product properties from spectroscopic measurements
Francesco Corona, Elia Liitiäinen, Amaury Lendasse, Lorenzo Sassu and Roberto Baratti
Neurocomputing 2008.

New methodologies based on delta test for variable selection in regression problems
Alberto Guillén, Dusan Sovilj, Fernando Mateo, Fernando Mateo and Amaury Lendasse
In: Workshop on Parallel Architectures and Bioinspired Algorithms, October 25-29, 2008, Toronto, Canada.

Optimal Pruned K-Nearest Neighbors: OP-KNN - Application to Financial Modeling
Qi Yu, Antti Sorjamaa, Yoan Miche, Amaury Lendasse, Alberto Guillén, Eric Séverin and Fernando Mateo
In: HIS 2008, 8th International Conference on Hybrid Intelligent Systems, September 10-12 2008, Barcelona, Spain.

OP-ELM: Theory, Experiments and a Toolbox
Yoan Miche, Antti Sorjamaa and Amaury Lendasse
In: LNCS - Artificial Neural Networks - ICANN 2008 - Part I Lecture Notes in Computer Science , 5163/2008 . (2008) Springer Berlin / Heidelberg , Prague, Czech Republic , pp. 145-154.

xftsp: a Tool for Time Series Prediction by Means of Fuzzy Inference Systems
Federico Montesino, Amaury Lendasse and Angel Barriga Barros
In: 4th IEEE International Conference on Intelligent Systems (IS08), 6-8 september 2008, 4th IEEE International Conference on Intelligent Systems (IS08).

A variable selection approach based on the Delta Test for Extreme Learning Machine models
Fernando Mateo and Amaury Lendasse
In: European Symposium on Time Series Prediction (ESTSP'08), 17 - 19 September 2008, Porvoo, Finland.

Instance or Prototype Selection for Function Approximation using Mutual Information
Alberto Guillén, Luis Herrera, Gines Rubio Rubio, Amaury Lendasse, Hector Pomares and Ignacio Rojas
In: European Symposium on Time Series Prediction (ESTSP'08), 17 - 19 September 2008, Porvoo, Finland.

Long-Term Prediction of Time Series using NNE-based Projection and OP-ELM
Antti Sorjamaa, Yoan Miche, Robert Weiss and Amaury Lendasse
In: IEEE World Conference on Computational Intelligence, June 2008, Hong Kong.

Fuzzy Inference Based Autoregressors for Time Series Prediction Using Nonparametric Residual Variance Estimation
Federico Montesino Pouzols, Amaury Lendasse and Angel Barriga Barros
In: 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2008), IEEE World Congress on Computational Intelligence, June 2008, Hong Kong.

A methodology for Building Regression Models using Extreme Learning Machine: OP-ELM
Yoan Miche, Patrick Bas, Christian Jutten, Olli Simula and Amaury Lendasse
In: ESANN 2008, European Symposium on Artificial Neural Networks, April 23-25 2008, Bruges, Belgium.

Compressing spectral data using optimised Gaussian basis
Tuomas Kärna, Francesco Corona and Amaury Lendasse
Journal of Chemometrics Volume 22, pp. 701-707, 2008.

On Nonparametric Residual Variance Estimation
Elia Liitiäinen, Francesco Corona and Amaury Lendasse
Neural Processing Letters Volume 28, Number 3, pp. 155-167, 2008.

Wavelength selection using the measure of topological relevance on the Self-Organizing Map
Francesco Corona, Satu-Pia Reinikainen, Kari Aalioki, Anniki Perkkiö, Elia Liitiäinen, Roberto Baratti, Amaury Lendasse and Olli Simula
Journal of Chemometrics Volume 22, Number 11, pp. 610-620, 2008.

Bounds on the power-weighted mean nearest neighbor distance
Elia Liitiäinen, Amaury Lendasse and Francesco Corona
Proceedings of the Royal Society, Series A Volume 464, Number 2097, pp. 2293-2301, 2008.

Using the Delta test for variable selection
Emil Eirola, Elia Liitiäinen, Amaury Lendasse, Francesco Corona and Michel Verleysen
In: ESANN 2008, European Symposium on Artificial Neural Networks, April 23-25 2008, Bruges, Belgium.

Linear projection based on noise variance estimation: Application to spectral data
Amaury Lendasse and Francesco Corona
In: ESANN 2008, European Symposium on Artificial Neural Networks, April 23-25 2008, Bruges, Belgium.

ESTSP 2008: Proceedings
Amaury Lendasse, ed. (2008) Multiprint Oy / Otamedia , Espoo, Finland . ISBN 978-951-22-9544-9

Nonlinear temporal and spatial forecasting: modelling and uncertainty analysis (NoTeS) – MASIT20
Risto Ritala, Esa Alhoniemi, Tuomo Kauranne, Kimmo Konkarikoski, Amaury Lendasse and Miki Sirola
In: MASI Programme 2005–2009,Yearbook 2008 and workshop, 2008, Finland.

Developing chemometrics with the tools of information sciences (CHESS) – MASIT23
Olli Simula, Francesco Corona, Amaury Lendasse, Marja-Liisa Riekkola, Kari Hartonen, Pentti Minkkinen, Satu-Pia Reinikainen, Jarno Kohonen, Ilppo Vuorinen, Jari Hänninen and Jukka Silén
In: MASI Programme 2005–2009,Yearbook 2008 and workshop, 2008, Finland.

An improved methodology for filling missing values in spatiotemporal climate data set
Antti Sorjamaa, Amaury Lendasse, Yves Cornet and Eric Deleersnijder
Computational Geosciences 2009.

Linear Combination of SOMs for Data Imputation: Application to Financial Problems
Antti Sorjamaa, Francesco Corona, Amaury Lendasse, Yoan Miche and Eric Severin
In: 7th International Workshop on Self-Organizing Maps (WSOM 2009), June 2009, Saint Augustine.

Reliable Steganalysis Using a Minimum Set of Samples and Features
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula
EURASIP Journal on Information Security 2009.

X-SOM and L-SOM: a Nested Approach for Missing Value Imputation
Paul Merlin, Antti Sorjamaa, Bertrand Maillet and Amaury Lendasse
In: ESANN'09 Conference, 22 - 24 April 2009, Bruges, Belgium.

Long-Term Prediction of Time Series by combining Direct and MIMO Strategies
Souhaib Ben Taieb, Gianluca Bontempi, Antti Sorjamaa and Amaury Lendasse
In: IJCNN2009, June 14-19, Atlanta, USA.

A faster model selection criterion for OP-ELM and OP-KNN: HQ criterion
Yoan Miche and Amaury Lendasse
In: ESANN'09 Conference, 22 - 24 April 2009, Bruges, Belgium.

Minimizing the Delta Test for Variable Selection in Regression Problems
Alberto Guillen, Dusan Sovilj, Fernando Mateo, Ignacio Rojas and Amaury Lendasse
Int. J. High Performance Systems Architecture 2008.

Residual Variance Estimation in Machine Learning
Elia Liitiäinen, Michel Verleysen, Francesco Corona and Amaury Lendasse
Neurocomputing 2009.

An improved methodology for filling missing values in spatiotemporal climate data set
Antti Sorjamaa, Amaury Lendasse, Yves Cornet and Eric Deleersnijder
Computational Geosciences Volume 14, pp. 55-64, 2010. ISSN 1420-0597

A Non-Linear Approach for Completing Missing Values in Temporal Databases
Paul Merlin, Antti Sorjamaa, Bertrand Maillet and Amaury Lendasse
European Journal of Economic and Social Systems Volume 22, pp. 99-117, 2009.

X-SOM and L-SOM: A double classification approach for missing value imputation
Paul Merlin, Antti Sorjamaa, Bertrand Maillet and Amaury Lendasse
Neurocomputing 2010.

OP-ELM: Optimally Pruned Extreme Learning Machine
Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten and Amaury Lendasse
IEEE TRANSACTIONS ON NEURAL NETWORKS Volume 21, Number 1, pp. 158-162, 2010. ISSN 1045-9227

Residual variance estimation using a nearest neighbor statistic
Elia Liitiainen, Francesco Corona and Amaury Lendasse
JOURNAL OF MULTIVARIATE ANALYSIS Volume 101, Number 4, pp. 811-823, 2010. ISSN 0047-259X

Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation
Federico Pouzols, Amaury Lendasse and Angel Barriga
FUZZY SETS AND SYSTEMS Volume 161, Number 4, pp. 471-497, 2010. ISSN 0165-0114

A SOM-based approach to estimating product properties from spectroscopic measurements
Francesco Corona, Elia Liitiainen, Amaury Lendasse, Lorenzo Sassu, Stefano Melis and Roberto Baratti
NEUROCOMPUTING Volume 73, Number 1-3, pp. 71-79, 2009. ISSN 0925-2312

Residual variance estimation in machine learning
Elia Liitiainen, Michel Verleysen, Francesco Corona and Amaury Lendasse
Neurocomputing Volume 72, Number 16+18, pp. 3692-3703, 2009. ISSN 0925-2312

Reliable Steganalysis Using a Minimum Set of Samples and Features
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula
EURASIP Journal on Information Security Volume 2009, pp. 1-13, 2009.

A Feature Selection Methodology for Steganalysis
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula
TRAITEMENT DU SIGNAL Volume 26, Number 1, pp. 13-30, 2009. ISSN 0765-0019

OP-KNN: Theory and Applications
Qi Yu, Yoan Miche, Antti Sorjamaa, Alberto Guillen, Amaury Lendasse and Eric Severin
Advances in Artificial Neural Systems 2010.

European Symposium on Time Series Prediction: Special Issue
Amaury Lendasse, Timo Honkela and Olli Simula
Neurocomputing 2010.

New Method for Instance or Prototype Selection using Mutual Information in Time Series Prediction
Alberto Guillen, Luis Herrera, Gines Rubio, Hector Pomares, Amaury Lendasse and Ignacio Rojas
Neurocomputing 2010.

RCGA-S/RCGA-SP Methods to Minimize the Delta Test for Regression Tasks
Fernando Mateo, Dusan Sovilj, Rafael Gadea and Amaury Lendasse
In: Bio-Inspired Systems: Computational and Ambient Intelligence Lecture Notes in Computer Science , 5517/2009 . (2009) Springer Berlin / Heidelberg , pp. 359-366. ISBN 978-3-642-02477-1

Efficient Parallel Feature Selection for Steganography Problems
Alberto Guillen, Antti Sorjamaa, Yoan Miche, Amaury Lendasse and Ignacio Rojas
In: Bio-Inspired Systems: Computational and Ambient Intelligence Lecture Notes in Computer Science , 5517/2009 . (2009) Springer Berlin / Heidelberg , pp. 1224-1231. ISBN 978-3-642-02477-1

Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction
Mark van Heeswijk, Yoan Miche, Tiina Lindh-Knuutila, Peter Hilbers, Timo Honkela, Erkki Oja and Amaury Lendasse
In: Artificial Neural Networks – ICANN 2009 Lecture Notes in Computer Science , 5769/2009 . (2009) Springer Berlin / Heidelberg , pp. 305-314. ISBN 0302-9743

Mutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problems
Alberto Guillen, Antti Sorjamaa, Gines Rubio, Amaury Lendasse and Ignacio Rojas
In: Artificial Neural Networks – ICANN 2009 Lecture Notes in Computer Science , 5769/2009 . (2009) Springer Berlin / Heidelberg , pp. 1-9. ISBN 0302-9743

On the statistical estimation of Rényi entropies
Elia Liitiainen, Amaury Lendasse and Francesco Corona
In: Machine Learning for Signal Processing, 2009. MLSP 2009. IEEE International Workshop on, 1-4 Sept. 2009, Grnoble, France.

Long-term prediction of time series by combining direct and MIMO strategies
Souhaib Ben Taieb, Gianluca Bontempi, Antti Sorjamaa and Amaury Lendasse
In: Neural Networks, 2009. IJCNN 2009. International Joint Conference on, 14-19 June 2009, Atlanta, USA.

Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database
Antti Sorjamaa, Francesco Corona, Yoan Miche, Paul Merlin, Bertrand Maillet, Eric Séverin and Amaury Lendasse
In: Advances in Self-Organizing Maps Lecture Notes in Computer Science . (2009) Springer Berlin / Heidelberg , pp. 290-297. ISBN 978-3-642-02396-5

Delaunay tessellation and topological regression: An application to estimating product properties
Francesco Corona, Elia Liitiainen, Amaury Lendasse, Roberto Baratti and Lorenzo Sassu
In: Computer Aided Chemical Engineering: Proceedings of {PSE} 2009 International Symposium on Process Systems Engineering, Salvador Bahia (Brazil) Computer Aided Chemical Engineering , 27 . (2009) Elsevier , pp. 1179-1184.

Regression for Large Datasets using an Ensemble of GPU-accelerated ELMs
Mark van Heeswijk, Yoan Miche, Erkki Oja and Amaury Lendasse
In: Large-Scale Machine Learning: Parallelism and Massive Datasets (NIPS 2009 Workshop), Friday December 11th, Whistler, Canada (NIPS 2009 Workshop).