PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

EPrints submitted by Bert Kappen

Click here to see user's record.

Number of EPrints submitted by this user: 58

Validity estimates for loopy belief propagation on binary real-world networks
Joris Mooij and Bert Kappen
In: Proceedings NIPS 2004, 13-18 Dec 2004, Vancouver, Canada.

Gaussian quadrature based expectation propagation.
Onno Zoeter and Tom Heskes
In: AI & Statistics 2005, 6-8 Jan 2005, Barbados.

Improved unscented Kalman smoothing for stock volatility estimation
Onno Zoeter, Alexander Ypma and Tom Heskes
In: IEEE International Workshop on Machine Learning for Signal Processing, 29 Sept - 01 Okt 2004, São Luís (Brazil).

Approximate Expectation Maximization
Tom Heskes, Wim Wiegerinck and Onno Zoeter
In: Neural Information Processing Systems Conference, NIPS 03, 7-11 Dec 2003, Vancouver and Whistler, British Columbia, Canada.

Improving Cox survival analysis with a neural-Bayesian approach
Bart Bakker, Tom Heskes, Jan Neijt and Bert Kappen
Statistics in Medicine pp. 2989-3012, 2004.

Survey propagation at finite temperature: application to a Sourlas code as a toy model
Bastian Wemmenhove and Bert Kappen
Journal of Physics A pp. 2-26, 2005.

Validity estimates for loopy belief propagation on binary real-world networks
Joris Mooij and Bert Kappen
In: nips 2004, 13-18 Dec 2004, Vancouver, Canada.

Sufficient conditions for convergence of loopy belief propagation
Joris Mooij and Bert Kappen
In: Uncertainty in Artificial Intelligence, 26-29 July 2005, Toronto. Camada.

On the properties of the bethe approximation and loopy belief propagation on binary networks
Joris Mooij and Bert Kappen
On the properties of the bethe approximation and loopy belief pp. 1-18, 2005.

Effects of fast presynaptic noise in attractor neural networks
J.M. Cortes, J.J. Torres, J. Marro and Bert Kappen
Neural Computation 2005.

The cluster variation method for efficient linkage analysis on extended pedigrees
Kees Albers, M.A.R. Leisink and Bert Kappen
BMC Bioinformatics, Special issue on Machine Learning in Computational Biology pp. 1-31, 2005.

A linear theory for control of non-linear stochastic systems
Bert Kappen
Physical Review Letters 2005.

Path integrals and symmetry breaking for optimal control theory
Bert Kappen
Journal of statistical mechanics: theory and Experiment 2005.

Gaussian quadrature based expectation propagation
Onno Zoeter and T. Heskes
In: AISTATS 2005, 6-8 Jan 2005, Barbados.

Modeling Bayesian Networks by Learning from Experts
Wim Wiegerinck
In: BNAIC 2005, 17-18 October 2005, Brussel.

Approximations with Reweighted Generalized Belief Propagation
Wim Wiegerinck
In: AISTATS 2005, 6-8 Jan 2005, Barbados.

Graphical model inference in optimal control of stochastic multi-agent systems.
Bart Broek, Wim Wiegerinck and Bert Kappen
Journal of Artificial Intelligence Research Volume 32, pp. 95-122, 2008.

Optimal control in large stochastic multi-agent systems
Bart Broek, Wim Wiegerinck and Bert Kappen
In: Adaptive Agents and Multi-Agent Systems III Computer Science , 4865 . (2008) Springer , pp. 15-26. ISBN 978-3-540-77947-6

Hybrid variational / gibbs collapsed inference in topic models.
M. Welling, Y Teh and Bert Kappen
In: UAI, 10-12 July 2008, Finland.

Multipoint approximations of identity-by-descent probabilities for accurate linkage analysis of distantly-related individuals
Kees Albers, J. Stankovich, T. Thomson, M. Bahlo and Bert Kappen
American Journal of Human Genetics, Volume 82, Number 3, pp. 607-622, 2008.

Self-organization using synaptic plasticity.
V. Gomez, A. Kaltenbrunner, V. Lopez and Bert Kappen
In: NIPS, 8- 11 December 2008, USA.

Understanding and improving belief propagation
Joris Mooij
(2008) PhD thesis, Radboud University Nijmegen.

Approximate inference methods for genetic linkage analysis
Kees Albers
(2008) PhD thesis, Radboud University Nijmegen.

Truncating the loop series expansion for bp.
V Gomez, Joris Mooij and Bert Kappen
Journal for Machine Learning Research (JMLR), Volume 8, pp. 1987-2016, 2008.

Optimal on-line scheduling in stochastic multi-agent systems in continuous space and time.
Wim Wiegerinck, Bart Broek and Bert Kappen
In: AAMAS, 14-18 May 2007, Hawai.

An introduction to stochastic control theory, path integrals and reinforcement learning
Bert Kappen
In: AIP, 11-15 September 2006, Spain.

Haplotype inference in general pedigrees using the cluster variation method.
Kees Albers
Genetics Number 177, pp. 1101-1116, 2007.

Loop corrections for approximate inference on factor graphs.
Joris Mooij and Bert Kappen
Journal of Machine Learning Research Volume 8, pp. 1113-1143, 2007.

Sufficient conditions for convergence of the sum-product algorithm
Joris Mooij and Bert Kappen
IEEE Transactions on Information Theory, Volume 53, Number 12, pp. 4422-4437, 2007.

Competition between synaptic depression and facilitation in attractor neural networks
J.J. Torres, J.M. Cortes, J. Marro and Bert Kappen
Neural Computation Volume 19, pp. 2739-2755, 2007.

Loop corrected belief propagation
Joris Mooij, Bastian Wemmenhove, Bert Kappen and T. Rizzo
In: AISTATS, 21-24 March 2007, Puerto Rico.

Input-driven oscillations in networs with excitatory and inhibitory neurons with dynamic synapses.
D Marinazzo, Bert Kappen and C.C. A.M. Gielen
Neural Computation Volume 19, pp. 1739-1765, 2007.

Optimal control in large stochastic multi-agent systems.
Bart Broek, Wim Wiegerinck and Bert Kappen
In: Alamas, 2-3 April 2007, The netherlands.

Inference in the promedas medical expert system
Bastian Wemmenhove, Joris Mooij, Wim Wiegerinck, Martijn Leisink, Bert Kappen and J. Neijt
In: AIME 2007, 7-11 July 2007, The netherlands.

Cavity approximation for graphical models.
T Rizzo, Bastian Wemmenhove and Bert Kappen
Physical Review E, section Statistical physics Volume E 76, Number no. 011102, pp. 1-9, 2007.

Bounds on marginal probability distributions
Joris Mooij and Bert Kappen
In: NIPS 2008, 7-12 Dec 2008, Vancouver.

Bayesian construction of perceptrons to predict phenotypes from 584K SNP data.
Luc Janss and Bert Kappen
In: PASCAL Computational Statistics Workshop, June 2009, London, UK.

A Bayesian Petrophysical Decision Support System for Estimation of Reservoir Compositions
Willem Burgers, Wim Wigerinck, Bert Kappen and Mirano Spalburg
Proceeding BNAIC 2010 Volume 22, pp. 1-2, 2010.

Risk Sensitive Path Integral Control
Bart Broek, Bert Kappen and Bert Kappen
In: BNAIC 2010, 25 Oct- 26 Oct 2010, Luxemburg.

Bonaparte: Disaster Victim Identification System
Willem Burgers and Wim Wiegerinck
In: BNAIC 2010, 25 Oct - 26 Oct 2010, Luxemburg.

Bayesian Networks for Expert Systems, Theory and Practical Applications
Wim Wiegerinck, Bert Kappen and Willem Burgers
In: Interactive Collaborative Information Systems Studies in Computational Intelligence , 281 . (2010) Springer , pp. 547-578. ISBN 10.1007/978-3-642-11688-9_20

Dynamic Policy Programming
Mohammad Gheshlaghi Azar and Bert Kappen
Journal for Machine Learning Research Volume 15, Number CP15, pp. 1-26, 2011.

Approximate Inference on Planar Graphs using Loop Calculus and Belief Propagation
Vicenc¸ Gómez and Bert Kappen
Journal of Machine Learning Research Volume 11, pp. 1273-1296, 2010.

Speedy Q-Learning
Mohammad Azar, R. Munos, M. Ghavamzadaeh and Bert Kappen
In: NIPS 2011, December 2011, Spain.

Modeling the structure and evolution of discussion cascades.
V. Gomez, Bert Kappen and A. Kaltenbrunner
In: ACM Conference on Hypertext and Hypermedia, 22nd, 2011, 2011.

Stochastic Optimal Control of State Constrained Systems
Bart Broek, W. Wiegerinck and Bert Kappen
International Jouranl of Control pp. 1-9, 2011.

On the use of interaction error potentilas adaptive brain computer interfaces
Alberto Llera, M. van Gerven, Vicenc Gomez, O. Jensen and Bert Kappen
Neural Networks Volume 24, pp. 1120-1127, 2011.

Optimal control theory and the linear Bellman Equation
Bert Kappen
In: Inference and Learning in Dynamic Models (2011) Cambridge University Press , UK , pp. 363-387.

Optimal control as a graphical model inference problem
Bert Kappen, Vicenc Gomez and Manfred Opper
Machien Learning Journal pp. 1-11, 2012.

A multi-model ensemble method that combines imperfect models through learning
L.A. Berge, F.M. Selten, Wim Wiegerinck and G.S. Duane
Earth System Dynamics Volume 2, pp. 161-177, 2011.

Bonaparte: Application of new software for missing persons program
C.J. van Dongen, K. Slooten, M. Slagter, willem Burgers and Wim Wiegerinck
Forensic Science International: Genetics Supplement Series Volume 3, Number 1, e119-e120, 2011.

Supermodeling by combining imperfect models.Procedia Computer Science
F.M. Selten, G.S. Duane, Wim Wiegerinck, N. Keenlyside and J. Kurths
In: The European Future Technologies Conference and Exhibition 2011, 4-6 May 2011, Budapest, Hungary.

Dynamic policy programming
Mohammad Azar and Bert Kappen
Journal of Machine Learning Research pp. 3207-3245, 2012. ISSN cs 1004,2027

Minimax PAC Bounds on the Sample Complexity of Reinforcement Learning with a Generative Model
Mohammad Azar, Remi Munos and Bert Kappen
Machine Learning Journal 2013.

On the sample Complexity of Reinforcement Learning with a Generative Model
Mohammad Azar, Remi Munos and Bert Kappen
In: ICML, 29th International Conference on Machine learning, 26-06 -01-07-2012, Edinburgh.

Dynamic Policy Programming
Mohammad Azar and Bert Kappen
Journal of Machine Learning Research 2013.

Speedy Q-Learning: A Computationally Efficient Reinforcement Learning Algorithm with a Near Optimal Rate of Convergence
Mohammad Azar, Remi Munos, M. Ghavamzadach and Bert Kappen
Journal of Machine Learning Research 2012.

Online solution of the average cost Kullback-Leibler optimization problem
Joris Bierkens, Vicenc Gomez and Bert Kappen
International Workshop on Optimization for Machine Learning 2012.