PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

EPrints submitted by Anton Schwaighofer

Click here to see user's record.

Number of EPrints submitted by this user: 11

Hierarchical Bayesian Modelling with Gaussian Processes
Anton Schwaighofer, Volker Tresp and Kai Yu
In: Neural Information Processing Systems 2004, 13-16 Dec 2004, Vancouver, Canada.

Probabilistic memory based collaborative filtering: Learning individual and social preferences
Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu and Hans-Peter Kriegel
IEEE Transactions on Knowledge and Data Engineering Volume 15, Number 1, pp. 56-69, 2004.

Mining Functional Modules in Genetic Networks with Decomposable Graphical Models
Mathaeus Dejori, Anton Schwaighofer, Volker Tresp and Martin Stetter
OMICS A Journal of Integrative Biology Volume 8, Number 2, pp. 176-188, 2004.

Learning Gaussian Processes from Multiple Tasks
Kai Yu, Volker Tresp and Anton Schwaighofer
In: International Conference on Machine Learning ICML 2005, Aug 2005, Bonn, Germany.

Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach
Anton Schwaighofer, Timon Schroeter, Sebastian Mika, Julian Laub, Antonius ter Laak, Detlev Suelzle, Ursula Ganzer, Nikolaus Heinrich and Klaus-Robert Müller
Journal of Chemical Information and Modeling Volume 47, Number 2, pp. 407-424, 2007.

Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach
Timon Schroeter, Anton Schwaighofer, Sebastian Mika, Antonius ter Laak, Detlev Suelzle and Nikolaus Heinrich
In: American Chemical Society 232nd National Meeting & Exposition, September 10 - 14, 2006, San Francisco.

Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach
Anton Schwaighofer, Timon Schroeter, Sebastian Mika, Antonius ter Laak, Detlev Suelzle and Nikolaus Heinrich
In: 2nd German Conference on Chemoinformatics / 20th CIC Workshop, 12. - 14. November 2006, Goslar, Germany.

Predicting lipophilicity of drug discovery molecules using gaussian process models
Timon Schroeter, Anton Schwaighofer, Sebastian Mika, Antonius ter Laak, Detlev Suelzle, Ursula Ganzer, Nikolaus Heinrich and Klaus-Robert Müller
ChemMedChem Volume 2, Number 9, pp. 1265-1267, 2007.

Structure learning with nonparametric decomposable models
Anton Schwaighofer, Mathaeus Dejori, Volker Tresp and Martin Stetter
In: Proceedings of ICANN 2007 (2007) Springer , pp. 119-128.

Estimating the domain of applicability for machine learning qsar rmodels: A study on aqueous solubility of drug discovery molecules
Timon Schroeter, Anton Schwaighofer, Sebastian Mika, Antonius ter Laak, Detlev Suelzle, Ursula Ganzer, Nikolaus Heinrich and Klaus-Robert Müller
Journal of Computer Aided Molecular Design Volume 21, Number 9, pp. 485-498, 2007.

Machine learning models for lipophilicity and their domain of applicability
Timon Schroeter, Anton Schwaighofer, Sebastian Mika, Antonius ter Laak, Detlev Suelzle, Ursula Ganzer, Nikolaus Heinrich and Klaus-Robert Müller
Molecular Pharmaceutics Volume 4, Number 4, pp. 524-538, 2007.