PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Efficient Online Structured Output Learning for Keypoint-Based Object Tracking
Sam Hare, Amir Saffari and Philip Torr
In: CVPR 2012, 18-20 June 2012., Rhode Island.


Efficient keypoint-based object detection methods are used in many real-time computer vision applications. These approaches often model an object as a collection of keypoints and associated descriptors, and detection then involves first constructing a set of correspondences between object and image keypoints via descriptor matching, and subsequently using these correspondences as input to a robust geometric estimation algorithm such as RANSAC to find the transformation of the object in the image. In such approaches, the object model is generally constructed of- fline, and does not adapt to a given environment at runtime. Furthermore, the feature matching and transformation estimation stages are treated entirely separately. In this paper, we introduce a new approach to address these problems by combining the overall pipeline of correspondence generation and transformation estimation into a single structured output learning framework. Following the recent trend of using efficient binary descriptors for feature matching, we also introduce an approach to approximate the learned object model as a collection of binary basis functions which can be evaluated very efficiently at runtime. Experiments on challenging video sequences show that our algorithm significantly improves over state-of-the-art descriptor matching techniques using a range of descriptors, as well as recent online learning based approaches.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
ID Code:9547
Deposited By:Sunando Sengupta
Deposited On:15 June 2012