PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Three things everyone should know to improve object retrieval
Relja Arandjelovi´c and Andrew Zisserman
In: CVPR 2012, 18-20 June 2012., Rhode Island.


The objective of this work is object retrieval in large scale image datasets, where the object is specified by an image query and retrieval should be immediate at run time in the manner of Video Google [28]. We make the following three contributions: (i) a new method to compare SIFT descriptors (RootSIFT) which yields superior performance without increasing processing or storage requirements; (ii) a novel method for query expansion where a richer model for the query is learnt discriminatively in a form suited to immediate retrieval through efficient use of the inverted index; (iii) an improvement of the image augmentation method proposed by Turcot and Lowe [29], where only the augmenting features which are spatially consistent with the augmented image are kept. We evaluate these three methods over a number of standard benchmark datasets (Oxford Buildings 5k and 105k, and Paris 6k) and demonstrate substantial improvements in retrieval performance whilst maintaining immediate retrieval speeds. Combining these complementary methods achieves a new state-of-the-art performance on these datasets.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
ID Code:9543
Deposited By:Sunando Sengupta
Deposited On:15 June 2012