PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Adaptive Classification Improves Control Performance in ERP-Based BCIs
Sven Dähne, Johannes Höhne and Michael Tangermann
In: 5th International BCI Conference 2011, 22-24 Sept 2011, Graz.


This contribution investigates the effects of applying an unsupervised adaptation mechanism to linear classifiers for Brain-Computer Interfaces (BCI). Specifically, we track changes in the first two moments of the unlabeled data distribution. Changes are adaptively compensated by recalculating the classifier based on short, consecutive data segments. The approach is validated on three auditory oddball data sets containing a total of N=37 subjects, of which 6 were used for model selection and the remaining 31 for validation. We find a significant performance increase (up to 14%) for the adaptive scheme compared to a fixed classifier. The increase is largest for subjects with low performance.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Brain Computer Interfaces
ID Code:9461
Deposited By:Benjamin Blankertz
Deposited On:02 March 2012