PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Taxonomy-Informed Latent Factor Models for Implicit Feedback
Andriy Mnih
In: KDD Cup Workshop 2011, 21 Aug 2011, San Diego.

Abstract

We describe an approach based on latent factor models to the Track 2 task of KDD Cup 2011, which required learning to discriminate between highly rated and unrated items from a large dataset of music ratings. We take the pairwise ranking route, training our models to rank the highly rated items above the unrated items which are sampled from the same distribution. Using the item relationship information from the provided taxonomy to constrain item representations results in improved predictive performance. Providing the model with features summarizing the user rating history as it relates to the item being ranked leads to further improvement.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Talk)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:9207
Deposited By:Andriy Mnih
Deposited On:21 February 2012