PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Bayesian Group Factor Analysis
Seppo Virtanen, Arto Klami, Suleiman A. Khan and Samuel Kaski
In: AI & Statistics 2012, 21-23 Apr 2012, La Palma, Canary Islands.

Abstract

We introduce a factor analysis model that summarizes the dependencies between observed variable groups, instead of dependencies between individual variables as standard factor analysis does. A group may correspond to one view of the same set of objects, one of many data sets tied by co-occurrence, or a set of alternative variables collected from statistics tables to measure one property of interest. We show that by assuming group-wise sparse factors, active in a subset of the sets, the variation can be decomposed into factors explaining relationships between the sets and factors explaining away set-specific variation. We formulate the assumptions in a Bayesian model providing the factors, and apply the model to two data analysis tasks, in neuroimaging and chemical systems biology.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Multimodal Integration
Theory & Algorithms
ID Code:9109
Deposited By:Arto Klami
Deposited On:21 February 2012