PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Informative Priors for Markov Blanket Discovery
Adam Pocock, Mikel Lujan and Gavin Brown
In: Artificial Intelligence and Statistics, April 21-23 2012, La Palma, Canary Islands.


We present a novel interpretation of information theoretic feature selection as optimization of a discriminative model. We show that this formulation coincides with a group of mutual information based filter heuristics in the literature, and show how our probabilistic framework gives a well-founded extension for informative priors. We then derive a particular sparsity prior that recovers the well-known IAMB algorithm and extend it to create a novel algorithm, IAMB-IP, that includes domain knowledge priors. In empirical evaluations, we find the new algorithm to improve Markov Blanket recovery even when a misspecified prior was used, in which half the prior knowledge was incorrect.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
ID Code:9107
Deposited By:Gavin Brown
Deposited On:16 March 2012