PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Sparse Gaussian Processes for Learning Preferences
Ehsan Abbasnejad, Edwin Bonilla and Scott Sanner
In: NIPS, Choice Models and Preference Learning Workshop, December 2011, Granada Spain.

Abstract

Preference learning has recently gained significant attention in the machine learning community. This is mainly due to its increasing applications in the real-world problems. In this paper, we investigate a Gaussian process framework for learning the preferences which uses Expectation Propagation (EP) as its main inference method. This framework is capable of using the information from all the users for prediction of preferences unlike the traditional approaches that only considers single-user. We furthermore extend this framework to a sparse setting and show its empirical efficiency.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:9048
Deposited By:Wray Buntine
Deposited On:21 February 2012