PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Composite Binary Losses
Mark Reid and Bob Williamson
Journal of Machine Learning Research Number 11, pp. 2387-2422, 2010.

Abstract

We study losses for binary classifi cation and class probability estimation and extend the understanding of them from margin losses to general composite losses which are the composition of a proper loss with a link function. We characterise when margin losses can be proper composite losses, explicitly show how to determine a symmetric loss in full from half of one of its partial losses, introduce an intrinsic parametrisation of composite binary losses and give a complete characterisation of the relationship between proper losses and "classi cation calibrated" losses. We also consider the question of the "best" surrogate binary loss. We introduce a precise notion of "best" and show there exist situations where two convex surrogate losses are incommensurable. We provide a complete explicit characterisation of the convexity of composite binary losses in terms of the link function and the weight function associated with the proper loss which make up the composite loss. This characterisation suggests new ways of "surrogate tuning". Finally, in an appendix we present some new algorithm-independent results on the relationship between properness, convexity and robustness to misclassifi cation noise for binary losses and show that all convex proper losses are non-robust to misclassi fication noise. Preprint: http://arxiv.org/pdf/0912.3301v1

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:9043
Deposited By:Wray Buntine
Deposited On:21 February 2012