PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Branch&Rank: Non-Linear Object Detection
Alain Lehmann, Peter Gehler and Luc Van Gool
In: British Machine Vision Conference 2011, 29 Aug - 2 Sep 2011, Dundee, UK.

Abstract

Branch&rank is an object detection scheme that overcomes the inherent limitation of branch&bound: this method works with arbitrary (classifier) functions whereas tight bounds exist only for simple functions. Objects are usually detected with less than 100 classifier evaluation, which paves the way for using strong (and thus costly) classifiers: We utilize non-linear SVMs with RBF-Chi2 kernels without a cascade-like approximation. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for too simple function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single, structured SVM formulation. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We demonstrate the algorithmic properties using the VOC'07 dataset.

EPrint Type:Conference or Workshop Item (Oral)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
ID Code:8949
Deposited By:Alain Lehmann
Deposited On:21 February 2012