PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

A Kernel Approach to Tractable Bayesian Nonparametrics
Ferenc Huszar and Simon Lacoste-Julien
arXiv 2011.


Inference in popular nonparametric Bayesian models typically relies on sampling or other approximations. This paper presents a general methodology for constructing novel tractable nonparametric Bayesian methods by applying the kernel trick to inference in a parametric Bayesian model. For example, Gaussian process regression can be derived this way from Bayesian linear regression. Despite the success of the Gaussian process framework, the kernel trick is rarely explicitly considered in the Bayesian literature. In this paper, we aim to fill this gap and demonstrate the potential of applying the kernel trick to tractable Bayesian parametric models in a wider context than just regression. As an example, we present an intuitive Bayesian kernel machine for density estimation that is obtained by applying the kernel trick to a Gaussian generative model in feature space.

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:8873
Deposited By:Simon Lacoste-Julien
Deposited On:21 February 2012