PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Approximate Gaussian Integration using Expectation Propagation
John Cunningham, Philipp Hennig and Simon Lacoste-Julien
arXiv 2011.

Abstract

While Gaussian probability densities are omnipresent in applied mathematics, Gaussian cumulative probabilities are hard to calculate in any but the univariate case. We offer here an empirical study of the utility of Expectation Propagation (EP) as an approximate integration method for this problem. For rectangular integration regions, the approximation is highly accurate. We also extend the derivations to the more general case of polyhedral integration regions. However, we find that in this polyhedral case, EP's answer, though often accurate, can be almost arbitrarily wrong. These unexpected results elucidate an interesting and non-obvious feature of EP not yet studied in detail, both for the problem of Gaussian probabilities and for EP more generally.

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:8872
Deposited By:Simon Lacoste-Julien
Deposited On:21 February 2012