PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Predictive Features for Detecting Indefinite Polar Sentences
Michael Wiegand and Michael Wiegand
In: LREC 2010, 19 May - 21 May 2010, La Valletta, Malta.


In recent years, text classification in sentiment analysis has mostly focused on two types of classification, the distinction between objective and subjective text, i.e. subjectivity detection, and the distinction between positive and negative subjective text, i.e. polarity classification. So far, there has been little work examining the distinction between definite polar subjectivity and indefinite polar subjectivity. While the former are utterances which can be categorized as either positive or negative, the latter cannot be categorized as either of these two categories. This paper presents a small set of domain independent features to detect indefinite polar sentences. The features reflect the linguistic structure underlying these types of utterances. We give evidence for the effectiveness of these features by incorporating them into an unsupervised rule-based classifier for sentence-level analysis and compare its performance with supervised machine learning classifiers, i.e. Support Vector Machines (SVMs) and Nearest Neighbor Classifier (kNN). The data used for the experiments are webreviews collected from three different domains.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Natural Language Processing
ID Code:8862
Deposited By:Diana Schreyer
Deposited On:21 February 2012