PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Removing noise from astronomical images using a pixel-specific noise model
H.C. Burger, Bernhard Schölkopf and Stefan Harmeling
In: IEEE International Conference on Computational Photography (ICCP 2011)(2011).

Abstract

For digital photographs of astronomical objects, where exposure times are usually long and ISO settings high, the so-called dark-current is a significant source of noise. Dark-current refers to thermally generated electrons and is therefore present even in the absence of light. This paper presents a novel approach for denoising astronomical images that have been corrupted by dark-current noise. Our method relies on a probabilistic description of the dark-current of each pixel of a given camera. The noise model is then combined with an image prior which is adapted to astronomical images. In a laboratory environment, we use a black and white CCD camera containing a cooling unit and show that our method is superior to existing methods in terms of root mean squared error. Furthermore, we show that our method is practically relevant by providing visually more appealing results on astronomical photographs taken with a single lens reflex CMOS camera.

EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Brain Computer Interfaces
Theory & Algorithms
ID Code:8677
Deposited By:Bernhard Schölkopf
Deposited On:18 February 2012