PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Lipschitz bandits without the Lipschitz constant
Sébastien Gerchinovitz, Gilles Stoltz and Jia Yuan Yu
In: ALT 2011, 5-7 Oct 2011, Espoo, Finland.

Abstract

We consider the setting of stochastic bandit problems with a continuum of arms. We first point out that the strategies considered so far in the literature only provided theoretical guarantees of the form: given some tuning parameters, the regret is small with respect to a class of environments that depends on these parameters. This is however not the right perspective, as it is the strategy that should adapt to the specific bandit environment at hand, and not the other way round. Put differently, an adaptation issue is raised. We solve it for the special case of environments whose mean-payoff functions are globally Lipschitz. More precisely, we show that the minimax optimal orders of magnitude $L^{d/(d+2)} \, T^{(d+1)/(d+2)}$ of the regret bound against an environment $f$ with Lipschitz constant $L$ over $T$ time instances can be achieved without knowing $L$ or $T$ in advance. This is in contrast to all previously known strategies, which require to some extent the knowledge of $L$ to achieve this performance guarantee.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:8654
Deposited By:Gilles Stoltz
Deposited On:18 February 2012