PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning
Rémi Coulom
In: Thirteenth Conference on Advances in Computer Games (ACG13), From 2011-11-18 to 2011-11-26, Tilburg, The Netherlands.


Artificial intelligence in games often leads to the problem of parameter tuning. Some heuristics may have coefficients, and they should be tuned to maximize the win rate of the program. A possible approach is to build local quadratic models of the win rate as a function of program parameters. Many local regression algorithms have already been proposed for this task, but they are usually not robust enough to deal automatically and efficiently with very noisy outputs and non-negative Hessians. The CLOP principle, which stands for Confident Local OPtimization, is a new approach to local regression that overcomes all these problems in a simple and efficient way. CLOP discards samples whose estimated value is confidently inferior to the mean of all samples. Experiments demonstrate that, when the function to be optimized is smooth, this method outperforms all other tested algorithms.

EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:8606
Deposited By:Rémi Coulom
Deposited On:21 February 2012