PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

From names to entities using thematic context distance
Anja Pilz and Gerhard Paaß
In: CIKM 2011, 24-28 Oct 2011, Glasgow, UK.

Abstract

Name ambiguity arises from the polysemy of names and causes uncertainty about the true identity of entities referenced in unstructured text. This is a major problem in areas like information retrieval or knowledge management, for example when searching for a specific entity or updating an existing knowledge base. We approach this problem of named entity disambiguation (NED) using thematic information derived from Latent Dirichlet Allocation (LDA) to compare the entity mention's context with candidate entities in Wikipedia represented by their respective articles. We evaluate various distances over topic distributions in a supervised classification setting to find the best suited candidate entity, which is either covered in Wikipedia or unknown. We compare our approach to a state of the art method and show that it achieves significantly better results in predictive performance, regarding both entities covered in Wikipedia as well as uncovered entities. We show that our approach is in general language independent as we obtain equally good results for named entity disambiguation using the English, the German and the French Wikipedia.

PDF - PASCAL Members only - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Natural Language Processing
Information Retrieval & Textual Information Access
ID Code:8601
Deposited By:Anja Pilz
Deposited On:16 March 2012