PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Factored shapes and appearances for parts-based object understanding
Ali Eslami and Christopher Williams
In: The 22nd British Machine Vision Conference, 29 Aug - 2 Sept 2011, Dundee, United Kingdom.

Abstract

We present a novel generative framework for learning parts-based representations of object classes. Our model, Factored Shapes and Appearances (FSA), employs a highly factored representation to reason about appearance and shape variability across datasets of images. We propose Markov Chain Monte Carlo sampling schemes for efficient inference and learning, and evaluate the model on a number of datasets. Here we consider datasets that exhibit large amounts of variability, both in the shapes of objects in the scene, and in their appearances. We show that the FSA model extracts meaningful parts from training data, and that its parameters and representation can be used to perform a range of tasks, including object parsing, segmentation and fine-grained categorisation.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:8594
Deposited By:Ali Eslami
Deposited On:13 February 2012