PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Robust multi-class Gaussian process classification
Daniel Hernández-Lobato, José Miguel Hernánez Lobato and Pierre Dupont
In: Neural Information Processing Systems, 12-15 Dec 2011, Granada, Spain.

Abstract

Multi-class Gaussian Processs Classifiers (MGPCs) are often affected by overfitting problems when labeling errors occur far from the decision boundaries. To prevent this, we investigate a robust MGPC (RMGPC) which considers labeling errors independently of their distance to the decision boundaries. Expectation propagation is used for approximate inference. Experiments with several datasets in which noise is injected in the labels illustrate the benefits of RMGPC. This method performs better than other Gaussian process alternatives based on considering latent Gaussian noise or heavy-tailed processes. When no noise is injected in the labels, RMGPC still performs equal or better than the other methods. Finally, we show how RMGPC can be used for successfully indentifying data instances which are difficult to classify correctly in practice.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
ID Code:8433
Deposited By:José Miguel Hernánez Lobato
Deposited On:01 January 2012