PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Multiple instance metric learning from automatically labeled bags of faces
Matthieu Guillaumin, Jakob Verbeek and Cordelia Schmid
In: ECCV 2010(2010).


Metric learning aims at finding a distance that approximates a task-specific notion of semantic similarity. Typically, a Mahalanobis distance is learned from pairs of data labeled as being semantically similar or not. In this paper, we learn such metrics in a weakly supervised setting where "bags" of instances are labeled with "bags" of labels. We formulate the problem as a multiple instance learning (MIL) problem over pairs of bags. If two bags share at least one label, we label the pair positive, and negative otherwise. We propose to learn a metric using those labeled pairs of bags, leading to MildML, for multiple instance logistic discriminant metric learning. MildML iterates between updates of the metric and selection of putative positive pairs of examples from positive pairs of bags. To evaluate our approach, we introduce a large and challenging data set, Labeled Yahoo! News, which we have manually annotated and contains 31147 detected faces of 5873 different people in 20071 images. We group the faces detected in an image into a bag, and group the names detected in the caption into a corresponding set of labels. When the labels come from manual annotation, we find that MildML using the bag-level annotation performs as well as fully supervised metric learning using instance-level annotation. We also consider performance in the case of automatically extracted labels for the bags, where some of the bag labels do not correspond to any example in the bag. In this case MildML works substantially better than relying on noisy instance-level annotations derived from the bag-level annotation by resolving face-name associations in images with their captions.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:8406
Deposited By:Jakob Verbeek
Deposited On:04 December 2011