PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Improving web-image search results using query-relative classifiers
Josip Krapac, Moray Allan, Jakob Verbeek and Frederic Jurie
In: CVPR 2010(2010).

Abstract

Web image search using text queries has received considerable attention. However, current state-of-the-art approaches require training models for every new query, and are therefore unsuitable for real-world web search applications. The key contribution of this paper is to introduce generic classifiers that are based on query-relative features which can be used for new queries without additional training. They combine textual features, based on the occurence of query terms in web pages and image meta-data, and visual histogram representations of images. The second contribution of the paper is a new database for the evaluation of web image search algorithms. It includes 71478 images returned by a web search engine for 353 different search queries, along with their meta-data and ground-truth annotations. Using this data set, we compared the image ranking performance of our model with that of the search engine, and with an approach that learns a separate classifier for each query. Our generic models that use query-relative features improve significantly over the raw search engine ranking, and also outperform the query-specific models.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:8403
Deposited By:Jakob Verbeek
Deposited On:04 December 2011