PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Learning Tree-structured Descriptor Quantizers for Image Categorization
Josip Krapac, Jakob Verbeek and Frederic Jurie
In: BMVC 2011, Dundee, UK(2011).


Current state-of-the-art image categorization systems rely on bag-of-words representations that model image content as a histogram of quantization indices that code local image appearance. In this context, randomized tree-structured quantizers have been shown to be both computationally efficient and yielding discriminative visual words for a given categorization task. This paper presents a new algorithm that builds tree-structured quantizers not to optimize patch classification but to directly optimize the image classification performance. This approach is experimentally validated on several challenging data sets for which it outperforms other patch quantizers such as standard decision trees or k-means.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:8392
Deposited By:Jakob Verbeek
Deposited On:04 December 2011