PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Functional Regularized Least Squares Classification with Operator-Valued Kernels
Hachem Kadri, Asma Rabaoui, Philippe Preux, Emmanuel Duflos and Alain Rakotomamonjy
In: 28th ICML, Jun 28 - Jul 2, 2011, Seattle, USA.

Abstract

Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operator-valued kernel feature space perspective for the analysis of functional data. We then extend the Regularized Least Squares Classification (RLSC) algorithm to cover situations where there are multiple functions per observation. Experiments on a sound recognition problem show that the proposed method outperforms the classical RLSC algorithm.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:8289
Deposited By:Philippe Preux
Deposited On:29 July 2011