## AbstractWe consider the classical finite-state discounted Markovian decision problem, and we introduce a new policy iteration-like algorithm for finding the optimal Q-factors. Instead of policy evaluation by solving a linear system of equations, our algorithm involves (possibly inexact) solution of an optimal stopping problem. This problem can be solved with simple Q-learning iterations, in the case where a lookup table representation is used; it can also be solved with the Q-learning algorithm of Tsitsiklis and Van Roy [TsV99], in the case where feature-based Q-factor approximations are used. In exact/lookup table representation form, our algorithm admits asynchronous and stochastic iterative implementations, in the spirit of asynchronous/modified policy iteration, with lower overhead advantages over existing Q-learning schemes. Furthermore, for large-scale problems, where linear basis function approximations and simulation-based temporal difference implementations are used, our algorithm resolves effectively the inherent difficulties of existing schemes due to inadequate exploration.
[Edit] |