PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Empirical Bernstein Inequalities for U-Statistics
Thomas Peel, Sandrine Anthoine and Liva Ralaivola
In: NIPS 2010, 6-9 Dec 2010, Vancouver, Canada.


We present original empirical Bernstein inequalities for U-statistics with bounded symmetric kernels q. They are expressed with respect to empirical estimates of either the variance of q or the conditional variance that appears in the Bernstein-type inequality for U-statistics derived by Arcones [2]. Our result subsumes other existing empirical Bernstein inequalities, as it reduces to them when U-statistics of order 1 are considered. In addition, it is based on a rather direct argument using two applications of the same (non-empirical) Bernstein inequality for U-statistics. We discuss potential applications of our new inequalities, especially in the realm of learning ranking/scoring functions. In the process, we exhibit an efficient procedure to compute the variance estimates for the special case of bipartite ranking that rests on a sorting argument. We also argue that our results may provide test set bounds and particularly interesting empirical racing algorithms for the problem of online learning of scoring functions.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:7658
Deposited By:Thomas Peel
Deposited On:17 March 2011