PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Infinite Relational Modeling of Functional Connectivity in Resting State fMRI
Morten Mørup, Kristoffer Madsen, Anne Marie Dogonowski, Hartwig Siebner and Lars Kai Hansen
NIPS Volume 23, 2010.


Functional magnetic resonance imaging (fMRI) can be applied to study the functional connectivity of the neural elements which form complex network at a whole brain level. Most analyses of functional resting state networks (RSN) have been based on the analysis of correlation between the temporal dynamics of various regions of the brain. While these models can identify coherently behaving groups in terms of correlation they give little insight into how these groups interact. In this paper we take a different view on the analysis of functional resting state networks. Starting from the definition of resting state as functional coherent groups we search for functional units of the brain that communicate with other parts of the brain in a coherent manner as measured by mutual information. We use the infinite relational model (IRM) to quantify functional coherent groups of resting state networks and demonstrate how the extracted component interactions can be used to discriminate between functional resting state activity in multiple sclerosis and normal subjects.

PDF - PASCAL Members only - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
ID Code:7630
Deposited By:Morten Mørup
Deposited On:17 March 2011