PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

A characterization of horizontal visibility graphs and combinatorics on words
G. Gutin, T. Mansour and S. Severini
Physica A: Statistical Mechanics and its Applications 2010.

Abstract

An Horizontal Visibility Graph (for short, HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos [B. Luque, \emph{et al.}, \emph{Phys. Rev. E} \textbf{80} (2009), 046103]. We prove that a graph is an HVG if and only if outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics [P. Flajolet and M. Noy, \emph{Discrete Math.}, \textbf{204} (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm.\textbf{ }Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique we determine asymptotically the average number of edges of HVGs.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
??
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:7533
Deposited By:Gregory Gutin
Deposited On:17 March 2011