PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Real-time news recommender system
Blaz Fortuna, Carolina Fortuna and Dunja Mladenić
In: Machine learning and knowledge discovery in databases : European conference, ECML PKDD 2010, 20 - 24 September 2010, Barcelona, Spain.


In this demo we present a robust system for delivering real-time news recommendation to the user based on the user’s history of the past visits to the site, current user’s context and popularity of stories. Our system is running live providing real-time recommendations of news articles. The system handles overspecializing as we recommend categories as opposed to items, it implicitly uses collaboration by taking into account user context and popular items and, it can handle new users by using context information. A unique characteristic of our system is that it prefers freshness over relevance, which is important for recommending news articles in real-world setting as addressed here. We experimentally compare the proposed approach as implemented in our system against several state-of-the-art alternatives and show that it significantly outperforms them.

EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:User Modelling for Computer Human Interaction
Information Retrieval & Textual Information Access
ID Code:7484
Deposited By:Jan Rupnik
Deposited On:17 March 2011