PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Modeling skin and ageing phenotypes using latent variable models in Infer.NET
David Knowles, Leopold Parts, Daniel Glass and John Winn
In: Predictive Models in Personalized Medicine Workshop, NIPS 2010, 11 Dec 2010, Vancouver, Canada.


We demonstrate and compare three unsupervised Bayesian latent variable models implemented in Infer.NET for biomedical data modeling of 42 skin and aging phenotypes measured on the 12,000 female twins in the Twins UK study. We address various data modeling problems include high missingness, heterogeneous data, and repeat observations. We compare the proposed models in terms of their performance at predicting disease labels and symptoms from available explanatory variables, concluding that factor analysis type models have the strongest statistical performance in this setting. We show that such models can be combined with regression components for improved interpretability.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
ID Code:7468
Deposited By:David Knowles
Deposited On:17 March 2011