PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Gaussian Process Preference Elicitation
Edwin Bonilla, Shengbo Guo and Scott Sanner
In: Proceedings of the 24th Annual Conference on Neural Information Processing Systems (NIPS-10), Vancouver, Canada(2010).

Abstract

Bayesian approaches to preference elicitation (PE) are particularly attractive due to their ability to explicitly model uncertainty in users’ latent utility functions. However, previous approaches to Bayesian PE have ignored the important problem of generalizing from previous users to an unseen user in order to reduce the elicitation burden on new users. In this paper, we address this deficiency by introducing a Gaussian Process (GP) prior over users’ latent utility functions on the joint space of user and item features. We learn the hyper-parameters of this GP on a set of preferences of previous users and use it to aid in the elicitation process for a new user. This approach provides a flexible model of a multi-user utility function, facilitates an efficient value of information (VOI) heuristic query selection strategy, and provides a principled way to incorporate the elicitations of multiple users back into the model. We show the effectiveness of our method in comparison to previous work on a real dataset of user preferences over sushi types.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Theory & Algorithms
Information Retrieval & Textual Information Access
ID Code:7457
Deposited By:Wray Buntine
Deposited On:17 March 2011