PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Dialogue act tagging and segmentation with a single perceptron
Ramón Granell, S. Pulman, Carlos David Martínez-Hinarejos and José Miguel Benedí
In: 11th Annual Conference of the International Speech Communication Association, 27-30 September, Makuhari, Japan.

Abstract

In this paper we present a simultaneous automatic Dialogue Act (DA) tagger and segmenter. The model employed is based on the well-known single layer perceptron algorithm used successfully in other Computational Linguistic tasks. A decoding process was developed for searching the sequence of segments and DA tags from all the possible exponential possibilities. A set of features based on combination of words and DA tags were empirically selected. Models were tested over transcriptions of two corpora of dialogues (Switchboard and Dihana) and transcriptions and ASR output of a third corpus composed by meetings (AMI corpus). The results obtained for such a simple but powerful model are for some of the evaluation metrics equal or better than much more complex models presented in recent studies for the same experiments.

EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Natural Language Processing
ID Code:7430
Deposited By:Alfons Juan
Deposited On:17 March 2011