PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

LSPI with Random Projections
Mohammad Ghavamzadeh, Alessandro Lazaric, Odalric-Ambrym Maillard and Rémi Munos
(2010) Technical Report. INRIA, France.

Abstract

We consider the problem of reinforcement learning in high-dimensional spaces when the number of features is bigger than the number of samples. In particular, we study the least-squares temporal difference (LSTD) learning algorithm when a space of low dimension is generated with a random projection from a high- dimensional space. We provide a thorough theoretical analysis of the LSTD with random projections and derive performance bounds for the resulting algorithm. We also show how the error of LSTD with random projections is propagated through the iterations of a policy iteration algorithm and provide a performance bound for the resulting least-squares policy iteration (LSPI) algorithm.

EPrint Type:Monograph (Technical Report)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:7387
Deposited By:Mohammad Ghavamzadeh
Deposited On:17 March 2011