PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Variational learning for Gaussian mixtures
Nicholaos Nasios and Adrian Bors
IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics Volume 36, Number 4, pp. 849-862, 2006. ISSN 1083-4419


This paper proposes a joint maximum likelihood and Bayesian methodology for estimating Gaussian mixture models. In Bayesian inference, the distributions of parameters are modeled, characterized by hyperparameters. In the case of Gaussian mixtures, the distributions of parameters are considered as Gaussian for the mean, Wishart for the covariance, and Dirichlet for the mixing probability. The learning task consists of estimating the hyperparameters characterizing these distributions. The integration in the parameter space is decoupled using an unsupervised variational methodology entitled variational expectation-maximization (VEM). This paper introduces a hyperparameter initialization procedure for the training algorithm. In the first stage, distributions of parameters resulting from successive runs of the expectation-maximization algorithm are formed. Afterward, maximum-likelihood estimators are applied to find appropriate initial values for the hyperparameters. The proposed initialization provides faster convergence, more accurate hyperparameter estimates, and better generalization for the VEM training algorithm. The proposed methodology is applied in blind signal detection and in color image segmentation.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Machine Vision
ID Code:6944
Deposited By:Adrian Bors
Deposited On:13 June 2010