PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Estimating Facial Reflectance Properties using Shape-from-shading
William Smith and Edwin Hancock
International Journal of Computer Vision Volume 86, Number 2-3, pp. 152-170, 2009. ISSN 0920-5691

Abstract

n this paper we show how to estimate facial surface reflectance properties (a slice of the BRDF and the albedo) in conjunction with the facial shape from a single image. The key idea underpinning our approach is to iteratively interleave the two processes of estimating reflectance properties based on the current shape estimate and updating the shape estimate based on the current estimate of the reflectance function. For frontally illuminated faces, the reflectance properties can be described by a function of one variable which we estimate by fitting a curve to the scattered and noisy reflectance samples provided by the input image and estimated shape. For non-frontal illumination, we fit a smooth surface to the scattered 2D reflectance samples. We make use of a novel statistical face shape constraint which we term ‘model-based integrability’ which we use to regularise the shape estimation. We show that the method is capable of recovering accurate shape and reflectance information from single grayscale or colour images using both synthetic and real world imagery. We use the estimated reflectance measurements to render synthetic images of the face in varying poses. To synthesise images under novel illumination, we show how to fit a parametric model of reflectance to the estimated reflectance function.

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:6837
Deposited By:Edwin Hancock
Deposited On:08 March 2010