PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Model selection by resampling penalization
Sylvain Arlot
Electronic Journal of Statistics Volume 3, pp. 557-624, 2009. ISSN 1935-7524

This is the latest version of this eprint.

Abstract

In this paper, a new family of resampling-based penalization procedures for model selection is defined in a general framework. It generalizes several methods, including Efron’s bootstrap penalization and the leave-one-out penalization recently proposed by Arlot (2008), to any exchangeable weighted bootstrap resampling scheme. In the heteroscedastic regression framework, assuming the models to have a particular structure, these resampling penalties are proved to satisfy a non-asymptotic oracle inequality with leading constant close to 1. In particular, they are asympotically optimal. Resampling penalties are used for defining an estimator adapting simultaneously to the smoothness of the regression function and to the heteroscedasticity of the noise. This is remarkable because resampling penalties are general-purpose devices, which have not been built specifically to handle heteroscedastic data. Hence, resampling penalties naturally adapt to heteroscedasticity. A simulation study shows that resampling penalties improve on V-fold cross-validation in terms of final prediction error, in particular when the signal-to-noise ratio is not large.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
ID Code:6791
Deposited By:Sylvain Arlot
Deposited On:08 March 2010

Available Versions of this Item