PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Monte Carlo Inference and Maximization for Phrase-based Translation
Abhishek Arun, Chris Dyer, Barry Haddow, Phil Blunsom, Adam Lopez and Philipp Koehn
In: CoNLL 2009, 31 May - 5 June 2009, Boulder, USA.


Recent advances in statistical machine translation have used beam search for approximate NP-complete inference within probabilistic translation models. We present an alternative approach of sampling from the posterior distribution defined by a translation model. We define a novel Gibbs sampler for sampling translations given a source sentence and show that it effectively explores this posterior distribution. In doing so we overcome the limitations of heuristic beam search and obtain theoretically sound solutions to inference problems such as finding the maximum probability translation and minimum expected risk training and decoding.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Natural Language Processing
ID Code:6748
Deposited By:Phil Blunsom
Deposited On:08 March 2010