PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Object Class Segmentation using Random Forests
Florian Schroff, Antonio Criminisi and Andrew Zisserman
In: British Machine Vision Conference (BMVC), 1-4 Sep 2008, Leeds, UK.


This work investigates the use of Random Forests for class based pixel-wise segmentation of images. The contribution of this paper is three-fold. First, we show that apparently quite dissimilar classifiers (such as nearest neighbour matching to texton class histograms) can be mapped onto a Random Forest architecture. Second, based on this insight, we show that the performance of such classifiers can be improved by incorporating the spatial context and discriminative learning that arises naturally in the Random Forest framework. Finally, we show that the ability of Random Forests to combine multiple features leads to a further increase in performance when textons, colour, filterbanks, and HOG features are used simultaneously. The benefit of the multi-feature classifier is demonstrated with extensive experimentation on existing labelled image datasets. The method equals or exceeds the state of the art on these datasets.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Oral)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:6554
Deposited By:Karteek Alahari
Deposited On:08 March 2010