PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

The Infinite Partially Observable Markov Decision Process
Finale Doshi
Neural Information Processing Systems Volume 22, pp. 477-485, 2009.

Abstract

The Partially Observable Markov Decision Process (POMDP) framework has proven useful in planning domains where agents must balance actions that provide knowledge and actions that provide reward. Unfortunately, most POMDPs are complex structures with a large number of parameters. In many real-world problems, both the structure and the parameters are difficult to specify from domain knowledge alone. Recent work in Bayesian reinforcement learning has made headway in learning POMDP models; however, this work has largely focused on learning the parameters of the POMDP model. We define an infinite POMDP (iPOMDP) model that does not require knowledge of the size of the state space; instead, it assumes that the number of visited states will grow as the agent explores its world and only models visited states explicitly. We demonstrate the iPOMDP's utility on several standard problems.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:6513
Deposited By:Finale Doshi
Deposited On:08 March 2010