PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Accounting for non-genetic factors improves the power of eQTL studies
Oliver Stegle, Anitha Kannan, Richard Durbin and John M. Winn
In: RECOMB 2008, 30 March - 2 April 2008, Singapore.


The recent availability of large scale data sets profiling single nucleotide polymorphisms (SNPs) and gene expression across different human populations, has directed much attention towards discovering patterns of genetic variation and their association with gene regulation. The influence of environmental, developmental and other factors on gene expression can obscure such associations. We present a model that explicitly accounts for non-genetic factors so as to improve significantly the power of an expression Quantitative Trait Loci (eQTL) study. Our method also exploits the inherent block structure of haplotype data to further enhance its sensitivity. On data from the HapMap project, we find more than three times as many significant associations than a standard eQTL method.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:6495
Deposited By:Oliver Stegle
Deposited On:08 March 2010