PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Implicit color segmentation features for pedestrian and object detection
Patrick Ott and Mark Everingham
In: ICCV 2009, 29 Sep - 02 Oct 2009, Kyoto, Japan.

Abstract

We investigate the problem of pedestrian detection in still images. Sliding window classifiers, notably using the Histogram-of-Gradient (HOG) features proposed by Dalal and Triggs are the state-of-the-art for this task, and we base our method on this approach. We propose a novel feature extraction scheme which computes implicit ‘soft segmentations’ of image regions into foreground/background. The method yields stronger object/background edges than grayscale gradient alone, suppresses textural and shading variations, and captures local coherence of object appearance. The main contributions of our work are: (i) incorporation of segmentation cues into object detection; (ii) integration with classifier learning cf. a post-processing filter; (iii) high computational efficiency. We report results on the INRIA person detection dataset, achieving state-of-the-art results considerably exceeding those of the original HOG detector. Preliminary results for generic object detection on the PASCAL VOC2006 dataset also show substantial improvements in accuracy.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
ID Code:6255
Deposited By:Mark Everingham
Deposited On:08 March 2010