PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Multi-layer Boosting for Pattern Recognition
Francois Fleuret
Pattern Recognition Letters Volume 30, pp. 237-241, 2009.

Abstract

We extend the standard boosting procedure to train a two-layer classifier dedicated to handwritten character recognition. The scheme we propose relies on a hidden layer which extracts feature vectors on a fixed number of points of interest, and an output layer which combines those feature vectors and the point of interest locations into a final classification decision. Our main contribution is to show that the classical AdaBoost procedure can be extended to train such a multi-layered structure by propagating the error through the output layer. Such an extension allows for the selection of optimal weak learners by minimizing a weighted error, in both the output layer and the hidden layer. We provide experimental results on the MNIST database and compare to a classical unsupervised EM-based feature extraction.

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:6246
Deposited By:Francois Fleuret
Deposited On:08 March 2010