PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Dynamic Hybrid Algorithms for MAP Inference in Discrete MRFs
Karteek Alahari, Pushmeet Kohli and Philip Torr
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Volume 32, Number 10, pp. 1846-1857, 2010. ISSN 0162-8828

Abstract

In this paper, we present novel techniques that improve the computational and memory efficiency of algorithms for solving multi-label energy functions arising from discrete MRFs or CRFs. These methods are motivated by the observations that the performance of minimization algorithms depends on: (a) the initialization used for the primal and dual variables; and (b) the number of primal variables involved in the energy function. Our first method (dynamic alpha-expansion) works by `recycling' results from previous problem instances. The second method simplifies the energy function by `reducing' the number of unknown variables present in the problem. Further, we show that it can also be used to generate a good initialization for the dynamic alpha-expansion algorithm by `reusing' dual variables. We test the performance of our methods on energy functions encountered in the problems of stereo matching, and colour and object based segmentation. Experimental results show that our methods achieve a substantial improvement in the performance of alpha-expansion, as well as other popular algorithms such as sequential tree-reweighted message passing, and max-product belief propagation. We also demonstrate the applicability of our schemes for certain higher order energy functions for interactive texture based image and video segmentation. In most cases we achieve a 10-15 times speed-up in the computation time.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:6203
Deposited By:Karteek Alahari
Deposited On:08 March 2010