PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Kernels and learning curves for Gaussian process regression on random graphs
Peter Sollich, Matthew Urry and Camille Coti
In: NIPS 2009, 7-12 Dec 2009, Vancouver.


We investigate how well Gaussian process regression can learn functions defined on graphs, using large regular random graphs as a paradigmatic example. Random-walk based kernels are shown to have some non-trivial properties: within the standard approximation of a locally tree-like graph structure, the kernel does not become constant, i.e. neighbouring function values do not become fully correlated, when the lengthscale σ of the kernel is made large. Instead the kernel attains a non-trivial limiting form, which we calculate. The fully correlated limit is reached only once loops become relevant, and we estimate where the crossover to this regime occurs. Our main subject are learning curves of Bayes error versus training set size. We show that these are qualitatively well predicted by a simple approximation using only the spectrum of a large tree as input, and generically scale with n/V , the number of training examples per vertex. We also explore how this behaviour changes for kernel lengthscales that are large enough for loops to become important.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:6065
Deposited By:Matthew Urry
Deposited On:08 March 2010