PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

A Monte Carlo AIXI Approximation
Joel Veness, Kee Siong Ng, Marcus Hutter and David Silver
arXiv Number 0909.0801, 2009.


This paper describes a computationally feasible approximation to the AIXI agent, a universal reinforcement learning agent for arbitrary environments. AIXI is scaled down in two key ways: First, the class of environment models is restricted to all prediction suffix trees of a fixed maximum depth. This allows a Bayesian mixture of environment models to be computed in time proportional to the logarithm of the size of the model class. Secondly, the finite-horizon expectimax search is approximated by an asymptotically convergent Monte Carlo Tree Search technique. This scaled down AIXI agent is empirically shown to be effective on a wide class of toy problem domains, ranging from simple fully observable games to small POMDPs. We explore the limits of this approximate agent and propose a general heuristic framework for scaling this technique to much larger problems.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:5841
Deposited By:Marcus Hutter
Deposited On:08 March 2010