PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Tracking the flu pandemic by monitoring the Social Web
Vasileios Lampos and Nello Cristianini
In: IAPR 2nd Workshop on Cognitive Information Processing (CIP 2010), 14-16 Jun 2010, Elba Island, Tuscany, Italy.

Abstract

Tracking the spread of an epidemic disease like seasonal or pandemic influenza is an important task that can reduce its impact and help authorities plan their response. In particular, early detection and geolocation of an outbreak are important aspects of this monitoring activity. Various methods are routinely employed for this monitoring, such as counting the consultation rates of general practitioners. We report on a monitoring tool to measure the prevalence of disease in a population by analysing the contents of social networking tools, such as Twitter. Our method is based on the analysis of hundreds of thousands of tweets per day, searching for symptom-related statements, and turning statistical information into a flu-score. We have tested it in the United Kingdom for 24 weeks during the H1N1 flu pandemic. We compare our flu-score with data from the Health Protection Agency, obtaining on average a statistically significant linear correlation which is greater than 95%. This method uses completely independent data to that commonly used for these purposes, and can be used at close time intervals, hence providing inexpensive and timely information about the state of an epidemic.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Information Retrieval & Textual Information Access
ID Code:5711
Deposited By:Vasileios Lampos
Deposited On:08 March 2010