An LP View of the M-best MAP problem ## AbstractWe consider the problem of finding the M assignments with maximum probability in a probabilistic graphical model. We show how this problem can be formulated as a linear program (LP) on a particular polytope. We prove that, for tree graphs (and junction trees in general), this polytope has a particularly simple form and differs from the marginal polytope in a single inequality constraint. We use this characterization to provide an approximation scheme for non-tree graphs, by using the set of spanning trees over such graphs. The method we present puts the M-best inference problem in the context of LP relaxations, which have recently received considerable attention and have proven useful in solving difficult inference problems. We show empirically that our method often finds the provably exact M best configurations for problems of high tree-width.
[Edit] |