PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Structured output regression for detection with partial truncation
Andrea Vedaldi and Andrew Zisserman
In: Advances in Neural Information Processing Systems, December 7-10, 2009, Vancouver, Canada.

Abstract

We develop a structured output model for object category detection that explicitly accounts for alignment, multiple aspects and partial truncation in both training and inference. The model is formulated as large margin learning with latent variables and slack rescaling, and both training and inference are computationally efficient. We make the following contributions: (i) we note that extending the Structured Output Regression formulation of Blaschko and Lampert (ECCV 2008) to include a bias term significantly improves performance; (ii) that alignment (to account for small rota- tions and anisotropic scalings) can be included as a latent variable and efficiently determined and implemented; (iii) that the latent variable extends to multiple as- pects (e.g. left facing, right facing, front) with the same formulation; and (iv), most significantly for performance, that truncated and truncated instances can be included in both training and inference with an explicit truncation mask. We demonstrate the method by training and testing on the PASCAL VOC 2007 data set – training includes the truncated examples, and in testing object instances are detected at multiple scales, alignments, and with significant truncations.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Poster)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:5512
Deposited By:Karteek Alahari
Deposited On:30 December 2009