PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Robust Higher Order Potentials for Enforcing Label Consistency
Pushmeet Kohli, Lubor Ladicky and Philip Torr
International Journal of Computer Vision (IJCV) Volume 82, Number 3, pp. 302-324, 2009.

Abstract

This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the Robust $P^n$ model and are more general than the $P^n$ Potts model recently proposed by Kohli et al. We prove that the optimal swap and expansion moves for energy functions composed of these potentials can be computed by solving a st-mincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventional CRF used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. We believe that this method can be used to yield similar improvements for many other labelling problems.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Machine Vision
Learning/Statistics & Optimisation
ID Code:5449
Deposited By:Karteek Alahari
Deposited On:29 August 2009